

CIVIL & STRUCTURAL ENGINEERING CONSULTANTS 7A Barbados Avenue, Kingston 5, Jamaica, Tele: (876) 754-2154/5 Fax: (876) 754-2156 E-mail: mail@fcsconsultants.com

GORE FLORENCE HALL DEVELOPMENT

FCS # 0827/76/C

ENGINEERING REPORT Sewage Treatment System

Prepared for: GORE DEVELOPMENTS LIMITED 2C BRAEMAR KINGSTON 10

NOVEMBER 2008

Overview

This engineering report describes the sewerage treatment designs for the 866 two bedroom house development at Florence Hall Trelawny.

Sewerage Treatment Design

Design References

The sewage treatment design was prepared with reference to the developers manual Volume 3 Section 4 "Minimum Requirements for Waste Water Treatment Systems and Excreta Management in Jamaica" provided by the Ministry of Health& Environment – Environmental Health Unit; and EPA Technology Assessment: Subsurface Flow – Constructed Wetlands for Wastewater Treatment - EPA/832-R-93-008.

Design Criteria

The basic criteria used in the design is that influent to the treatment plant is typical of medium strength domestic sewage. The treatment plant effluent will meet NEPA 2004 standards for direct discharge.

Parameter	Units	Influent	Effluent
COD	mg/l	500	100
BOD	mg/l	250	20
TSS	mg/l	220	20
TKN	mg/l	40	10
Р	mg/l	8	4
FC	MPN/100ml	$10^7 - 10^8$	200

 Table 1: Sewage Treatment Plant Wastewater Characteristics

Sewage Treatment Plant Components

The sewage treatment plant consists of the following components:

- 1. Grit removal chamber
- 2. Septic tank
- 3. Distribution box
- 4. Reed beds with Bulrush (Scirpus)
- 5. Chlorination chamber

The size of each component is shown in the table below.

	e Hall Sewage Treatment Plant		
Septic 7	Fank, Reed Bed and Chlorination Chamber	Qty	Unit
1	Headworks including screen and grit removal structure		
2	Hydraulic retention time for Septic Tanks	1.5	Days
3	Septic Tank capacity	1,447.98	m³/d
4	Number of septic tank trains	6	No.
5	Capacity of each tank	245	m³/d
6	Dimensions of each Tank, Depth	3	m
7	Width	5	m
8	Length	16.6	m
9	Volume of each tank	249	m ³
10	Total septic volume	1,494	m ³
11	Effluent from septic tank flows into a distribution box that		
	spreads flow into three reed beds		
12	Reed bed loading	90	L/m ²
13	Reed bed size	10,725.75	m²
14	Reed bed depth	0.7	m
15	Voids in bed	0.5	
16	Number of reed bed trains	3	
17	Area of each bed	3,575.25	m²
18	Length	120	m
19	Width	30	m
20	L/W	5	#
21	Total Reed bed area	10,800	m²
22	Reed bed setback	20	m
23	Contact Chlorine chamber HRT	25	min
24	Volume required	25.14	m ³
25	D	0.9	m
26	W	2	m
27	L	14	m
28	Discharge into wetland		

 Table 2: Sewage Treatment Plant Components

Biochemical Processes

The septic tanks will have a hydraulic retention time of 1.5 days; during which the COD and BOD will be reduced to 300 and 150 mg/l respectively. The septic tanks will also remove the majority of the TSS and fecal coli form by about 1 log.

Parameter	Units	Influent	Effluent
COD	mg/l	300	<100
BOD	mg/l	150	20
TSS	mg/l	100	20
TKN	mg/l	40	10
Р	mg/l	8	4
FC	MPN/100ml	1.9×10^{6}	$1.9 \text{x} 10^4$

Table 3: Reed Bed Waste Water Influent

The reed bed is designed to have a minimum hydraulic retention time of 5.8 days. A hydraulic retention time of 2.8 days is required to reduce the oxygen demand to NEPA standards.

The BOD removal follows the 1st order plug flow reaction

L_t=Le^{-kt}

where L_t is the concentration of BOD at any time.

The reaction constant $k_T = k_{20} \Theta^{(T-20)}$

where k_{20} = Rate Constant at 20° C

$$k_{20} = = 1.104$$

 $\Theta = 1.06$

The average temperature for this site is 27 degrees Celsius. COD removal is at the same rate as BOD removal and COD is generally twice the BOD concentration.

The TSS will be removed within the first few metres of the reed bed (EPA/832-R-93-008).

The nitrogen entering wetland systems can be measured as organic nitrogen and ammonia (expressed as TKN), or as nitrate, or a combination of both nitrogen measurements. The organic N entering a reed bed is typically associated with particulate matter such as organic wastewater solids. Decomposition and mineralization processes in the wetland will convert a significant part of this organic N to ammonia (EPA/832-R-93-008).

Nitrogen removal by wetland plants ranges from 0.2 to 2.25 g/m²/day. In order to achieve required total nitrogen concentration of 10 mg/l; an additional 3 days of retention time is necessary for reduction by plant uptake.

Phosphorous removal by wetland plants ranges from 0.05 to 0.5 g/m²/day. Using an average of $0.25/m^2/day$, the phosphorous will be below acceptable levels within the 5.8 days of retention. Phosphorous reduction will occur via plant uptake and sedimentation of PO4.

Fecal coliform levels are expected to have a 2 log reduction in 5.8 days. Chlorination for 25 minutes in a contact chamber will reduce FC to acceptable levels.

Discharge from the chlorination chamber will be to a wetland north of the North Coast Highway.

Constructions details are included in the enclosed drawings.

Prepared By

Ivan Foreman, PEng. **Director**

APPENDIX

FOREMAN CHUNG &SYKES	
Project:Proposed residential developmentProject No.0827/76/C	
WETLAND DESIGN	
Input Data:	
Design Flow Rate,Q: 252549 GPD (33760.84) ft. ³ (955.644) m ³
Req'd BOD₅ Removal (%): 85	
Depth of Wetland, d:3ftType of soil in wetland:Medium GravelGradation of particles:35mm - 75mmPorosity of gravel/stones, n:40%Slope of bottom of wetland:0.4%	
Calculate Temperature Dependent Rate Constant	
Enter Avg. Temperature of location: 27	0
K_T = Rate Constant at Temperature T = $K_{20} \Theta^{(T-20)}$	
where K_{20} = Rate Constant at 20° C = Θ = 1.06	1.104
$ \rightarrow K_{T} = 1.104 (1.06)^{7} = 1.66 $	
Calculate Area of Reed Bed required for BOD removal	
$A = \underline{Q[ln(C_o/C_e)]}_{K_T dn}$	
where $C_o = Influent BOD_5$ (150mg/l) $C_e = Effluent BOD_5$ (<20mg/l)	
so C_o/C_e = Ratio of Influent: Effluent =	150 ÷ (100 - % Reduction) 6.67
Area = [33760.84 x ln (6.67)] ÷ [= 32152.64 sq. ft	1.66 x 3 x 0.4]

٦

Г

	aulic Reten	tion Time	Required for	BOD Remov	<u>/al</u>			
From the equat	ion :	$C_{\rm e}/C_{\rm e} =$	a(K⊤t)					
Hydraulic retent				∸ K-				
	uon une, i	- =	2.77					
Calculate Area	of Reed Be	ed required	l for Nitrogei	n removal				
Nitrogen Remo	val Obtaine	ed in First :	2.77 davs =		29	%		
Additional % Ni				31	%			
Specify Plant T	уре:	Bulrush	(Scirpus)					
Oxygen availab	ole =	depth x	available o	oxygen per ur	nit vol. for	specified	l plant	
		0.91			gm/m ³ /			
	=	6.86	gm/m²/d					
Assume 5mg/L Assume 100mg Therefore, Use	g/L BOD int	fluent and	-		rin Nitrate	;		
Oxygen Require	ed =	5 x Q x						
	=	5 x		m³/d x	4.65	mg/L		
	=	22219	gm/d					
Area Required	=	Oxygen	required/Ox	ygen Availab	le			
-		3240						
	=	3240	m⁻ (34860.505) sq.ft			
	=	3240	m ⁻ (34860.505) sq.ft			
Calculate Tota				34860.505) sq.ft			
	I Area and	I Retentio		34860.505 +) sq.ft ####	=	67013.1	sq.ft
TOTAL AREA	I Area and REQUIREI	I Retentio	<u>n time</u> 32152.64	+		=	67013.1	sq.ft
TOTAL AREA Using a 2:1 Le	I Area and REQUIREI	I Retentio	<u>n time</u> 32152.64	+		= Depth		
TOTAL AREA Using a 2:1 Le	I Area and REQUIREI ngth to Wi	I Retentio D = idth ratio,	<u>n time</u> 32152.64 Dimension	+ s are:	####			ft
=	I Area and REQUIREI ngth to Wi 366.10 111.59	I Retentio D = idth ratio, ft m	<u>n time</u> 32152.64 Dimension Width = =	+ s are: 183.05	####		= 3	ft
TOTAL AREA Using a 2:1 Le Length = = Total HRT =	I Area and REQUIREI ngth to Wi 366.10 111.59 2.77	I Retentio D = idth ratio, ft m +	<u>n time</u> 32152.64 Dimension Width =	+ s are: 183.05	####		= 3	ft
TOTAL AREA Using a 2:1 Le Length = =	I Area and REQUIREI ngth to Wi 366.10 111.59	I Retentio D = idth ratio, ft m	<u>n time</u> 32152.64 Dimension Width = =	+ s are: 183.05	####		= 3	ft
TOTAL AREA Using a 2:1 Le Length = = Total HRT = =	I Area and REQUIREI ngth to Wi 366.10 111.59 2.77 5.8	I Retention D = idth ratio, ft m + days	<u>n time</u> 32152.64 Dimension Width = = 3.00	+ s are: 183.05	#### ft m	Depth	= 3	ft
TOTAL AREA Using a 2:1 Le Length = = Total HRT = =	I Area and REQUIREI ngth to Wi 366.10 111.59 2.77 5.8 - EPA Tecl	I Retention D = idth ratio, ft m + days	<u>n time</u> 32152.64 Dimension Width = 3.00	+ s are: 183.05 55.79	#### ft m	Depth structed	= 3	ft
TOTAL AREA Using a 2:1 Le Length = = Total HRT = =	I Area and REQUIREI ngth to Wi 366.10 111.59 2.77 5.8 - EPA Tecl	I Retention D = idth ratio, ft m + days	<u>n time</u> 32152.64 Dimension Width = 3.00	+ s are: 183.05 55.79 Subsurface F	#### ft m	Depth structed	= 3	ft
TOTAL AREA Using a 2:1 Le Length = = Total HRT = =	I Area and REQUIREI ngth to Wi 366.10 111.59 2.77 5.8 - EPA Tecl	I Retention D = idth ratio, ft m + days	<u>n time</u> 32152.64 Dimension Width = 3.00	+ s are: 183.05 55.79 Subsurface F	#### ft m	Depth structed	= 3	ft
TOTAL AREA Using a 2:1 Le Length = = Total HRT = =	I Area and REQUIREI ngth to Wi 366.10 111.59 2.77 5.8 - EPA Tecl	I Retention D = idth ratio, ft m + days	<u>n time</u> 32152.64 Dimension Width = 3.00	+ s are: 183.05 55.79 Subsurface F	#### ft m	Depth structed	= 3	ft