

PROPOSED RESIDENTIAL DEVELOPMENT,

CORAL SPRINGS TRELAWNY

FCS #: 1124/76/C

DRAINAGE DESIGN ENGINEERING REPORT

PREPARED FOR Gore Developments Limited 2c Braemar Ave, Kingston 10

MARCH 2012

TABLE OF CONTENTS

Overview	2
Roadway Design	4
Drainage Design	5
Design Storm Event	5
Method of Determining Design Peak Flows	6
Storm Sewers	6
Open Drains	6
Pre-Development Drainage Assessment	7
Post-Development Drainage Assessment	
Depression Storage	
Recommendation and Conclusion	

Overview

Gore Developments Limited proposes to develop part of Coral Springs lands for housing. This particular parcel of land is north of the North Coast highway between White Bay and Duncans in Trelawny as shown in the figure below.

Figure 1 : Location of project site

The 169 acre parcel of land will be developed into 400 two bedroom homes and 142 larger service lots with the required open spaces, commercial area, and basic school. The development will surround an existing subdivision. FCS Consultants Limited is responsible for the infrastructure designs within the project boundaries; this includes roadways, water distribution, sewage and storm water collection as well as constructed wetlands for tertiary sewage treatment.

The basis for design is guided by the local requirements for permitting and international standards with regards to similar developments. The subdivision layout as shown below will be used to develop designs and drawings for construction.

FCS Consultants Limited GDL– Coral Springs – Drainage Report

Figure 2: Coral Springs Subdivision Layout

Roadway Design

The roadways will be designed to meet a combination of the NWA and the AASHTO road design standards.

Carriageway widths will be designed based on the classification or primary use of the road such as access to housing blocks, collector road for multiple blocks or ingress egress for the subdivision.

There are three road reservations provided by the planner for this subdivision, 18m wide for the main entry road, 10m for cul de sacs, 12.2m wide for all other local streets. The road reservation provided by the planner for the entrance road to the site consists of a dual carriageway and ends at a roundabout. Throughout the subdivision the 12.2m reservation is used to provide paved carriageways of 6.0m (2x 3.00m lanes) with 3.0m available for grassed verges or sidewalks within the housing blocks. The sidewalks are proposed along the main entry road and several of the local streets.

The carriageways will be designed with a crown in the middle, such that the transverse slope will be between 1.5% and 2.5% with the channel against the kerb having a triangular section with a slope of 2.5 to 6.25%.

Internal intersections within the subdivision will be designed with a 10m radius based on recommendations by the NWA. The turning radius at curves within the subdivision will be designed with 25m minimum.

The vertical alignments of all roads will be the minimum slope of 0.5% and a maximum slope of 15% in order to meet the NWA standard. Road profiles will be designed to meet the stopping sight distance criteria for a minimum design speed of 55kmph.

The pavement structure will be guided by the geotechnical report, however at a minimum there will be 38mm of asphaltic concrete on 150mm of granular road base.

Where additional guidance is required the following manuals will be used

- 1. Road pavement structure will be designed to conform to AASHTO flexible pavement design method or the Asphalt Institute design method.
- 2. All soil gradation to be specified in the AASHTO Soil Classification system.
- 3. All soil strength to be specified in accordance with the ASTM 04429-04 Standard Test Method for CBR (California Bearing Ratio) of Soils in Place and 01883-07 Standard Test Method for CBR (California Bearing Ratio) of Laboratory-Compacted Soils
- 4. All soil compaction to be specified as a percentage of Modified Proctor Compaction ASTM 01557- 07 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort

Drainage Design

The criteria used for drainage design are determined by the GOJ Development and investment manual, the Jamaica Institution of Engineers guidelines and best practices of the industry. The storm runoff from the development will be directed toward the necessary features of the drainage system such as storm sewer and open paved drains that fall toward the main detention area, or north towards the sea.

Design Storm Event

The Jamaica Institution of Engineers recommended "Guidelines for the design and Construction of Housing Infrastructure" Vol 1: 1984 Storm Water Drainage recommends that the design storm frequency of storm sewers be 2 years and for culverts, bridges and flood control projects a minimum of 10 years. Detention/retention ponds are required to provide storage for the 100 year event. Surface drainage systems are primarily concerned with convenience and providing access to property in relatively minor storms. The criteria for the designs of drains will be as follows:

- 1. Lots will discharge surface flows to the roads
- 2. Local streets will accommodate storm flows of 1:2 years to the crown of the road and storm flows of 1:5 years to kerb height
- 3. Main subdivision drainage channels will be designed to accommodate storms to 1:25 year return period with a freeboard provision of 25% depth of flow. These channels will provide capacity for the 1:100 year design storm at top bank levels.
- 4. Flood protection will be provided for the 1:100 year event for the development, while flood levels will be maintained for existing properties within the area.

Where additional guidance is required the following manuals will be used. The FHWA documents referenced are:

- 1. Hydraulic Engineering Circular No. 12 Drainage of Highway Pavements
- 2. Hydraulic Engineering Circular No. 14, Hydraulic Design of Energy Dissipators for Culverts and Channels Third Edition
- 3. Hydraulic Engineering Circular No. 15, Design of Roadside Channels with Flexible Linings Third Edition
- 4. Hydraulic Engineering Circular No. 22, URBAN DRAINAGEDESIGN MANUAL Second Edition

Method of Determining Design Peak Flows

In order to determine drain sizes the peak flow is needed. For catchment areas less than 200 acres the Rational Method (Q=CIA) will be used for determining the peak flow throughout the subdivision. The Donald Sangster IDF curves developed for the NWA bridges programme will be used. For flood routing and retention pond calculations the SCSTR20 Method will be used with the SCSUH type 3 hyetograph.

The rainfall depths for the project will be based on the gage at Duncans Trelawny.

Storm – return period	Rainfall Depth (mm)
2 yr	64
5 yr	104
10 yr	130
25 yr	164
50 yr	189
100 yr	213

Storm Sewers

The storm sewer system being the buried drainage conveyance system below the roadway pavement is designed to convey a 1:2 year storm without surcharging. The discharge of storm sewers will be to paved drains or grassed swales. Minimum cover will be as per the manufacturer's specifications. The storm sewer will be designed to ensure the carriageway can comfortably convey the 1:5 year at kerb height.

Storm sewer inlets will be placed appropriately in order to minimise the pipe runs and allow for maximum collection. A combination of kerb and grate inlets will be used as necessary.

Open Drains

Open drains will be used where possible and erosion protection using rigid linings will be used in the design. The **GOJ Development Manual**, Volume3, Section 1, Chapter 10, article 10.1.7 parts ii) and iii) recommend minimum easement and freeboard in drains are shown below:

(ii) A minimum easement of 1.22m from each side of the design water way is recommended.

(iii) Bridges and open channels should be designed with a freeboard not less than 25% of the design flow depth.

As recommended in the GOJ Development document all drains will be designed with a minimum 25% of the design depth as freeboard.

Pre-Development Drainage Assessment

The project site is a dry limestone forest on hilly terrain with 65% of the property draining into an existing central depression which contains standing water up to approximately 13m AMSL. The remaining 35% of the site drains northward overland towards the sea.

The depression drains approximately 311 Hectares (ha), 35.4 ha of which is part of the project site. Catchment area for the depression can be divided into four (4) sub-catchments, NE - 50.5 ha, SE 139 ha, SW- 67 ha and NW - 54.3ha. The largest contributing area comes from Dry Valley south of the Highway. The Northern area flows overland to the sea.

A hydrologic model was developed for the pre development condition in order to determine the peak discharges and flood elevations in the ponding area that could be generated by various storm events. The peak discharges (m^3/s) tabulated below were developed from SCS Type III rainfall distribution.

Catchment Name	Area (Ha)	CN	Тс	Q2	Q5	Q10	Q25	Q50	Q100
West Coral Springs	54.100	48	181.0	0.006	0.147	0.355	5.255	1.228	1.673
North Coral Springs	17.730	48	20.0	0.002	0.113	0.371	0.916	1.417	1.955
East Coral Springs	54.300	48	203.0	0.006	0.142	0.355	0.766	1.144	1.553
Dry Valley East	139.000	45	122.0	0.002	0.254	0.816	2.078	3.298	4.675
Dry Valley West	67.000	45	156.0	0.001	0.116	0.348	0.852	1.345	1.896

 Table 1: Pre Development catchment areas and discharge values

Figure 4: depression or ponding area

The depression or ponding area is emptied by infiltration. We assume the vegetation reduces the storage volume by 15%. The surface overflow point is at approximately 25m along the old road from Duncans to Falmouth. A conductivity rate of 5.68 mm/hr was used to determine flood potential. This is based on the soil investigation results showing hard brown clays in the low areas of the existing subdivision. It assumes that any existing sink holes or cavities are not the primary conduit for filtration from the site; but that the surface runoff percolates through the soil then the underlying limestone formation.

Figure 5: Demarcation of 100 year flood elevation of 17.48m

The summary of water surface elevations are tabulated below, however a full hydrologic report can be found in the appendix.

1	able 2: Expected Water Surface Elevations prior to proposed development				
	Storm – return period	Pre development Water surface elevation			
	25 yr	16.44 m			
	50 yr	16.98m			
	100 yr	17.48m			

Post-Development Drainage Assessment

Following the predevelopment assessment the project area was then analyzed based on the proposed subdivision layout in order to create a drainage model for the post development stage of the project. The entire site area was divided in the areas shown in Figure 5 below. In order to get the storm water off the roads a system of kerb inlets and pipes under the road will be used. Small open U drains will be used where required due to cover limitations.

Sub-catchments SA#1 to SA# 5 from part of the 54.3 ha NW drainage area and flows to the depression in a series of 600 to 900 mm diameter storm sewer and covered U drains

Sub-catchments SA#6 to SA# 8 are the ones that flow north towards the sea. They leave the subdivision at three exit points to meet natural channels in 600 mm to 900mm wide open U drains.

Sub-catchments SA#9 to SA# 14 form part of the 50.5 ha NE drainage area. These flow into the existing channels via several 600mm drains.

The discharges from each internal sub catchment are tabulated below.

 Table 3: Post Development discharges

 Coral Springs Subdivision Post Development Design

	Return	-						
Catchment Name	period	mm/day	Тс	Area m ²	с	mm/hr	Q cfs	cms
SA #1	1 in 2 yr	64	6	15,764.54	0.75	143.32	16.48	0.47
	1 in 5 yr	104	6	15,764.54	0.75	242.3459	27.88	0.79
	1 in 25 yr	164	6	15,764.54	0.75	391.99903	45.09	1.28
SA #2	1 in 2 yr	64	15	67,514.00	0.75	89.23	43.96	1.24
	1 in 5 yr	104	15	67,514.00	0.75	143.698	70.79	2.00
	1 in 25 yr	164	15	67,514.00	0.75	225.24267	110.96	3.14
SA #3	1 in 2 yr	64	6	20,636.71	0.75	143.32	21.58	0.61
	1 in 5 yr	104	6	20,636.71	0.75	242.3459	36.49	1.03
	1 in 25 yr	164	6	20,636.71	0.75	391.99903	59.02	1.67
SA #4	1 in 2 yr	64	15	31,938.61	0.6	89.23	16.64	0.47
	1 in 5 yr	104	15	31,938.61	0.6	143.698	26.79	0.76
	1 in 25 yr	164	15	31,938.61	0.6	225.24267	41.99	1.19
SA #5	1 in 2 yr	64	6	48,085.00	0.75	143.32	50.28	1.42
	1 in 5 yr	104	6	48,085.00	0.75	242.3459	85.03	2.41
	1 in 25 yr	164	6	48,085.00	0.75	391.99903	137.53	3.89
SA #6	1 in 2 yr	64	6	100,870.00	0.75	143.32	105.48	2.99
	1 in 5 yr	104	6	100,870.00	0.75	242.3459	178.36	5.05
	1 in 25 yr	164	6	100,870.00	0.75	391.99903	288.51	8.17
SA #7	1 in 2 yr	64	6	19,185.03	0.75	143.32	20.06	0.57
	1 in 5 yr	104	6	19,185.03	0.75	242.3459	33.92	0.96
	1 in 25 yr	164	6	19,185.03	0.75	391.99903	54.87	1.55
SA #8	1 in 2 yr	64	6	57,242.48	0.75	143.32	59.86	1.70
	1 in 5 yr	104	6	57,242.48	0.75	242.3459	101.22	2.87
	1 in 25 yr	164	6	57,242.48	0.75	391.99903	163.72	4.64
SA #9	1 in 2 yr	64	6	24,221.61	0.75	143.32	25.33	0.72
	1 in 5 yr	104	6	24,221.61	0.75	242.3459	42.83	1.21
	1 in 25 yr	164	6	24,221.61	0.75	391.99903	69.28	1.96
SA #10	1 in 2 yr	64	6	11,280.28	0.75	143.32	11.80	0.33
	1 in 5 yr	104	6	11,280.28	0.75	242.3459	19.95	0.56
	1 in 25 yr	164	6	11,280.28	0.75	391.99903	32.26	0.91
SA #11	1 in 2 yr	64	6	17,166.12	0.75	143.32	17.95	0.51
	1 in 5 yr	104	6	17,166.12	0.75	242.3459	30.35	0.86
	1 in 25 yr	164	6	17,166.12	0.75	391.99903	49.10	1.39
SA #12	1 in 2 yr	64	6	19,326.08	0.75	143.32	20.21	0.57
	1 in 5 yr	104	6	19,326.08	0.75	242.3459	34.17	0.97
	1 in 25 yr	164	6	19,326.08	0.75	391.99903	55.28	1.57
SA #13	1 in 2 yr	64	6	28,232.93	0.75	143.32	29.52	0.84
	1 in 5 yr	104	6	28,232.93	0.75	242.3459	49.92	1.41
	1 in 25 yr	164	6	28,232.93	0.75	391.99903	80.75	2.29
SA #14	1 in 2 yr	64	6	8,630.37	0.75	143.32	9.02	0.26
	1 in 5 yr	104	6	8,630.37	0.75	242.3459	15.26	0.43
	1 in 25 yr	164	6	8,630.37	0.75	391.99903	24.68	0.70
Average Residential Lot	1 in 5 yr	104	6	238.95	0.75	242.3459	0.42	0.01

Depression Storage

As the depression is the primary outlet for rainfall runoff from this area a hydrologic model was developed to determine what the potential water surface elevations would be due to additional runoff after the Coral Springs Housing development is constructed and to determine the required building limits for Coral Springs. The lands being developed by Gore Developments that contribute runoff to the depression were modeled with an increased Curve Number (CN 48 increased to CN 77 and CN 82). The results are detailed in the appendix and summarized in the tables below.

Storm – return period	Post development water surface elevation
25 yr	17.04 m
50 yr	17.57 m
100 yr	18.08 m

|--|

Due to the potential increase in water surface elevations with the additional runoff from the proposed Coral Springs housing development; it has been determined that the best way to mitigate against additional flooding is to expand the storage capacity of the depression and its infiltration potential.

Figure 7: Contours after regrading

This will be done by re-grading a part of the depression area above the standing water elevation (13.3); excavating between the 13.5 contour and the 14.2 contour and removing the hard brown clay and filling with compacted gravel and crushed limestone. It will then be vegetated for use as a park. The conductivity rate estimated for the area between 13.5 and 14.2 is 460 mm/hr. This is within the percolation range for a gravel stratum. When used to develop the HydroCad model the predicted water surface elevations are improved by these changes to the area.

Storm – return period	Post development water surface elevation – with grading
25 yr	15.46 m
50 yr	16.13 m
100 yr	16.70 m

Table 5: Expected Water Surface elevations with proposed development and grading of depression

This re-grading exercise is to ensure that the Post Development flood elevation is no more than the Pre Development after construction of the housing development. The results actually show the re-grading and removal of the clay layer in the park location will reduce the flood levels by approximately 0.78m in the 100yr storm and therefore reduce the threat to existing properties.

The figure below shows the proposed 13.5 to 17m contours after the re-grading exercise is completed. The re-grading on the north side of the pond is between 13.5 and 17m. To the west and south regarding is between 13.5 and 15m, only in properties owned by the developer.

Recommendation and Conclusion

The drainage system for the Coral Springs Development has been designed according to best practices. The streets and storm sewer will provide conveyance of peak discharges for the 10yr event. All storm sewer will empty into existing drains leading to the depression or natural gullies.

If no mitigation measures are taken the proposed Coral Spring housing development will impact the depression ponding area by raising the water surface elevation a total of 0.6m. This can be mitigated by re-grading above the standing water line to expand the pond as well as replacing the soil in a section of the proposed park in order to improve the percolation of storm water and achieve less than the same elevation as existed before the development. The current re-grading plan will reduce the post development water surface level to 0.78m below pre development level.

All subdivision lots and services are set above the proposed 100 yr flood limit of 16.7m.

Prepared by:

Checked by:

Lise Walter, PE Senior Civil Engineer David Chung, PE **Director**

APPENDIX

Appendix 1: IDF equations (Jamaica Bridges Programme- Hydraulics Guide 2009)	15
Appendix 2: Pre Development HydroCad Diagram	16
Appendix 3: Pre Development HydroCad results for 2 and 25 yr storms	17
Appendix 4: Pre Development HydroCad results for 50 and 100 yr storms	18
Appendix 5: Post Development Model	19
Appendix 6: Post Development HydroCad results for 2 and 25 yr storms	20
Appendix 7: Post Development HydroCad results for 50 and 100 yr storms	21

Table 2-1: Norman Manley International Airport						
Return Period (years)	Rainfall Intensity in i.p.h. or mm/hr					
	t < 60 min	t > 60 min				
2	i = 2.6125 P x t ^{-0.4814}	$i = 5.9487 P x t^{-0.6822}$				
5	i = 2.5444 P x t ^{-0.5119}	$i = 4.2020 P x t^{-0.6344}$				
10	i = 2.4944 P x t ^{-0.5218}	$i = 3.6597 P x t^{-0.6154}$				
25	$i = 2.4556 P x t^{-0.5300}$	$i = 3.2696 P x t^{-0.5999}$				
50	$i = 2.4377 P x t^{-0.5343}$	$i = 3.0870 P x t^{-0.5920}$				
100	i = 2.4230 P x t ^{-0.5375}	$i = 2.9552 P x t^{-0.5860}$				

i = Rainfall intensity in inches per hour (inch/hour) or millimeters per hour (mm/hr)

P = 24-hour rainfall in inches or mm

t = rainfall duration in minutes

Table 2-2: Sangster International Airport

Return Period (years)	Rainfall Intensity in i.p.h. or mm/hr					
	t < 60 min	t > 60 min				
2	$i = 5.6559 P x t^{-0.5171}$	$i = 24.8880 P x t^{-0.8790}$				
5	$i = 6.4753 P x t^{-0.5704}$	$i = 20.5852 P x t^{-0.8529}$				
10	$i = 6.7976 P x t^{-0.5893}$	$i = 19.2810 P x t^{-0.8439}$				
25	$i = 7.0630 P x t^{-0.604/}$	$i = 18.2178 P x t^{-0.8361}$				
50	i = 7.1972 P x t ^{-0.6123}	$i = 17.6826 P x t^{-0.8320}$				
100	$i = 7.2901 P x t^{-0.6181}$	$i = 17.2759 P x t^{-0.8288}$				
i = Rainfall intensity in inches per l	nour (inch/hour) or millimeters per hour (mm/h	r).				
P = 24-hour rainfall in inches or m	m					
t = rainfall duration in minutes						

Appendix 1: IDF equations (Jamaica Bridges Programme- Hydraulics Guide 20	Append	ix 1: IDF	equations	(Jamaica	Bridges	Programme-	Hydraulics	Guide 200
---	--------	-----------	-----------	----------	---------	------------	-------------------	-----------

Appendix 2: Pre Development HydroCad Diagram

Pre Development 2yr storm

Time span=5.00-72.00 hrs, dt=0.05 hrs, 1341 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: West Coral Springs Flow Length=1,429.0 m S	Runoff Area=54.1700 ha 0.00% Impervious Runoff Depth=0 mm Slope=0.0200 m/m Tc=181.4 min CN=48 Runoff=0.0055 m% 0.153 MI
Subcatchment 2S: Dry Valley West Flow Length=2,546.0 m S	Runoff Area=66.9989 ha 0.00% Impervious Runoff Depth=0 mm Nope=0.0800 m/m Tc=155.6 min CN=45 Runoff=0.0007 m³s 0.008 MI
Subcatchment 5S: East Coral Springs	Runoff Area=54.3000 ha 0.00% Impervious Runoff Depth=0 mm Length=1,050.0 m Tc=203.1 min CN=48 Runoff=0.0055 m³s 0.154 MI
Subcatchment 6S: Dry Valley East Flow Length=2,166.0 m S	Runoff Area=139.2947 ha 0.00% Impervious Runoff Depth=0 mm Slope=0.1000 m/m Tc=122.3 min CN=45 Runoff=0.0017 m³/s 0.016 MI
Subcatchment 8S: North- flowes to sea	Runoff Area=17.7300 ha 0.00% Impervious Runoff Depth=0 mm Tc=21.0 min CN=48 Runoff=0.0018 m³s 0.050 MI
Reach 3R: (new Reach) n=0.013 L=340.00 m	Avg. Depth=0.01 m Max Vel=0.70 m/s Inflow=0.0097 m³/s 1.947 Ml s=0.0162 m/m Capacity=10.6285 m³/s Outflow=0.0097 m³/s 1.939 Ml
Pond 4P: main pond	Peak Elev=13.225 m Storage=0.573 Ml Inflow=0.0211 m³/s 2.254 Ml Outflow=0.0101 m³/s 1.790 Ml
Pond 7P: Eastern drain	Peak Elev=20.003 m Storage=0.000 MI Inflow=0.0017 m∛s 0.016 MI Outflow=0.0017 m∛s 0.016 MI

Total Runoff Area = 332.4936 haRunoff Volume = 0.381 MlAverage Runoff Depth = 0 mm100.00% Pervious = 332.4936 ha0.00% Impervious = 0.0000 ha

Pre Development 25yr storm

Time span=5.00-72.00 hrs, dt=0.05 hrs, 1341 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: West Coral Springs	Runoff Area=54.1700 ha 0.00% Impervious Runoff Depth=31 mm
Flow Length=1,429.0 m	Slope=0.0200 m/m Tc=181.4 min CN=48 Runoff=0.8171 m3/s 16.744 MI
Cubactalument 2C: Dr. Walley Mart	Bunoff Arna-66 0090 ba 0.00% Imponique Bunoff Donth-25 mm
Subcatchment 25: Dry Valley West	Runoii Alea=00.3969 na 0.00% impervious Runoii Depiri=25 min Slope=0.0800 m/m To=155.6 min CN=45. Runoiff=0.8517 m³/s 16.875 Mi
Tiow Lengu = 2,540.0 m	
Subcatchment 5S: East Coral Springs	Runoff Area=54.3000 ha 0.00% Impervious Runoff Depth=31 mm
Fic	w Length=1,050.0 m Tc=203.1 min CN=48 Runoff=0.7661 m³/s 16.784 MI
Subcatchment 6S: Dry Valley East	Runoff Area=139.2947 ha 0.00% Impervious Runoff Depth=25 mm
Flow Length=2,166.0 m	Slope=0.1000 m/m 1c=122.3 min CN=45 Runoff=2.0776 m/s 35.084 Mi
Subcatchment 85: North- flowes to sea	Runoff Area=17.7300 ha 0.00% Impervious Runoff Depth=31 mm
	Tc=21.0 min CN=48 Runoff=0.9158 m³/s 5.480 MI
Reach 3R: (new Reach)	Avg. Depth=0.53 m Max Vel=3.95 m/s Inflow=2.0748 m³/s 37.015 MI
n=0.013 L=340.00) m S=0.0162 m/m Capacity=10.6285 m³/s Outflow=2.0737 m³/s 37.009 MI
Pond /P: main pond	Peak Elev=16 437 m_Storage=76 248 MI_Inflow=4 2822 m3/s 87 413 MI
	Outflow=0.2296 m³/s 39.965 MI
Pond 7P: Eastern drain	Peak Elev=20.846 m Storage=0.495 Ml Inflow=2.0776 m³/s 35.084 Ml
	Outflow=2.0668 m³/s 35.084 MI

Total Runoff Area = 332.4936 ha Runoff Volume = 90.968 MI Average Runoff Depth = 27 mm 100.00% Pervious = 332.4936 ha 0.00% Impervious = 0.0000 ha

Appendix 3: Pre Development HydroCad results for 2 and 25 yr storms

Pre Development 50yr storm

Time span=5.00-72.00 hrs, dt=0.05 hrs, 1341 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: West Coral Springs Flow Length=1,429.0 m Slope	Runoff Area=54.1700 ha 0.00% Impervious Runoff Depth=44 mm e=0.0200 m/m Tc=181.4 min CN=48 Runoff=1.2282 m³s 23.762 MI
Subcatchment 2S: Dry Valley West Flow Length=2,546.0 m Slope	Runoff Area=66.9989 ha 0.00% Impervious Runoff Depth=37 mm e=0.0800 m/m Tc=155.6 min CN=45 Runoff=1.3452 m³s 24.674 MI
Subcatchment 5S: East Coral Springs	Runoff Area=54.3000 ha 0.00% Impervious Runoff Depth=44 mm gth=1,050.0 m Tc=203.1 min CN=48 Runoff=1.1443 m³s 23.819 MI
Subcatchment 6S: Dry Valley East Flow Length=2,166.0 m Slope	Runoff Area=139.2947 ha 0.00% Impervious Runoff Depth=37 mm e=0.1000 m/m Tc=122.3 min CN=45 Runoff=3.2981 m∛s 51.298 MI
Subcatchment 8S: North- flowes to sea	Runoff Area=17.7300 ha 0.00% Impervious Runoff Depth=44 mm Tc=21.0 min CN=48 Runoff=1.4171 m³/s 7.777 MI
Reach 3R: (new Reach) n=0.013 L=340.00 m S	Avg. Depth=0.75 m Max Vel=4.39 m/s Inflow=3.2885 m³s 53.229 MI =0.0162 m/m Capacity=10.6285 m³s Outflow=3.2868 m³s 53.224 MI
Pond 4P: main pond Peal	kElev=16.981 m Storage=110.810 MI Inflow=6.6663 m∛s 125.479 MI Outflow=0.3182 m∛s 55.340 MI
Pond 7P: Eastern drain	Peak Elev=21.151 m Storage=0.921 MI Inflow=3.2981 m∛s 51.298 MI Outflow=3.2805 m∛s 51.298 MI

Total Runoff Area = 332.4936 ha Runoff Volume = 131.330 MI Average Runoff Depth = 39 mm 100.00% Pervious = 332.4936 ha 0.00% Impervious = 0.0000 ha

Pre Development 100 yr storm

Time span=5.00-72.00 hrs, dt=0.05 hrs, 1341 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method		
Subcatchment 1S: West Coral Springs Flow Length=1,429.0 m	Runoff Area=54.1700 ha 0.00% Impervious Runoff Depth=58 mm Slope=0.0200 m/m Tc=181.4 min CN=48 Runoff=1.6734 m%s 31.208 MI	
Subcatchment 2S: Dry Valley West Flow Length=2,546.0 m	Runoff Area=66.9989 ha 0.00% Impervious Runoff Depth=49 mm Slope=0.0800 m/m Tc=155.6 min CN=45 Runoff=1.8962 m³s 33.073 MI	
Subcatchment 5S: East Coral Springs	Runoff Area=54.3000 ha 0.00% Impervious Runoff Depth=58 mm w Length=1,050.0 m Tc=203.1 min CN=48 Runoff=1.5533 m³s 31.283 MI	
Subcatchment 6S: Dry Valley East Flow Length=2,166.0 m	Runoff Area=139.2947 ha 0.00% Impervious Runoff Depth=49 mm Slope=0.1000 m/m Tc=122.3 min CN=45 Runoff=4.6750 m³/s 68.761 MI	
Subcatchment 8S: North- flowes to sea	Runoff Area=17.7300 ha 0.00% Impervious Runoff Depth=58 mm Tc=21.0 min CN=48 Runoff=1.9546 m³s 10.215 MI	
Reach 3R: (new Reach) n=0.013 L=340.00	Avg. Depth=0.99 m Max Vel=4.69 m/s Inflow=4.6366 m³s 70.692 MI m S=0.0162 m/m Capacity=10.6285 m³s Outflow=4.6343 m³s 70.687 MI	
Pond 4P: main pond	Peak Elev=17.483 m Storage=148.986 MI Inflow=9.3129 m∛s 166.251 MI Outflow=0.3510 m∛s 67.964 MI	
Pond 7P: Eastern drain	Peak Elev=21.448 m Storage=1.506 MI Inflow=4.6750 m³s 68.761 MI Outflow=4.6286 m³s 68.761 MI	

Total Runoff Area = 332.4936 ha Runoff Volume = 174.540 Ml Average Runoff Depth = 52 mm 100.00% Pervious = 332.4936 ha 0.00% Impervious = 0.0000 ha

Appendix 4: Pre Development HydroCad results for 50 and 100 yr storms

Appendix 5: Post Development Model

Post Development 2yr storm

Time span=5.00-48.00 hrs, dt=0.05 hrs, 861 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method		
Subcatchment 1S: West Coral Springs (developed) Flor	Runoff Area=26.1334 ha 0.00% Impervious Runoff Depth=26 mm w Length=592.0 m Tc=18.3 min CN=82 Runoff=1.4774 m∛s 6.721 MI	
Subcatchment 2S: Dry Valley West Flow Length=2,546.0 m Si	Runoff Area=66.9989 ha 0.00% Impervious Runoff Depth=0 mm ope=0.0800 m/m Tc=155.6 min CN=45 Runoff=0.0007 m∛s 0.008 MI	
Subcatchment 5S: East Coral Springs (developed)	Runoff Area=29.3600 ha 38.00% Impervious Runoff Depth=19 mm w Length=435.0 m Tc=59.9 min CN=77 Runoff=0.6587 m³s 5.613 MI	
Subcatchment 6S: Dry Valley East Flow Length=2,166.0 m Si	Runoff Area=139.2947 ha 0.00% Impervious Runoff Depth=0 mm ope=0.1000 m/m Tc=122.3 min CN=45 Runoff=0.0017 m∛s 0.016 MI	
Subcatchment 8S: East Coral Springs	Runoff Area=24.9400 ha 0.00% Impervious Runoff Depth=2 mm ength=1,050.0 m Tc=203.1 min CN=55 Runoff=0.0170 m∛s 0.545 MI	
Subcatchment 9S: West Coral Springs Flow Length=1,429.0 m Si	Runoff Area=28.0400 ha 0.00% Impervious Runoff Depth=0 mm ope=0.0200 m/m Tc=181.4 min CN=48 Runoff=0.0028 m³s 0.079 MI	
Reach 3R: (new Reach) n=0.013 L=340.00 m	Avg. Depth=0.01 m Max Vel=0.70 m/s Inflow=0.0097 m³s 1.256 MI S=0.0162 m/m Capacity=10.6285 m³s Outflow=0.0097 m³s 1.248 MI	
Pond 7P: Eastern drain	Peak Elev=20.003 m Storage=0.000 MI Inflow=0.0017 m∛s 0.016 MI Outflow=0.0017 m∛s 0.016 MI	
Pond 8P: main pond	Peak Elev=13.710 m Storage=4.137 MI Inflow=1.6502 m³/s 14.214 MI Outflow=0.6599 m³/s 13.422 MI	

Total Runoff Area = 314.7670 ha Runoff Volume = 12.983 MI Average Runoff Depth = 4 mm 96.46% Pervious = 303.6102 ha 3.54% Impervious = 11.1568 ha

Post Development 25yr storm

Time span=5.00-48.00 hrs, dt=0.05 hrs, 861 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Runoff Area=26.1334 ha 0.00% Impervious Runoff Depth=112 mm Subcatchment 1S: West Coral Springs (developed) Flow Length=592.0 m Tc=18.3 min CN=82 Runoff=6.5330 m3/s 29.268 MI Subcatchment 2S: Dry Valley West Runoff Area=66.9989 ha 0.00% Impervious Runoff Depth=25 mm , How Length=2,546.0 m Slope=0.0800 m/m Tc=155.6 min CN=45 Runoff=0.8517 m3/s 16.875 MI Subcatchment 5S: East Coral Springs (developed) Runoff Area=29.3600 ha 38.00% Impervious Runoff Depth=99 mm Flow Length=435.0 m Tc=59.9 min CN=77 Runoff=3.6790 m3/s 28.941 MI Subcatchment 6S: Dry Valley East Runoff Area=139.2947 ha 0.00% Impervious Runoff Depth=25 mm How Length=2,166.0 m Slope=0.1000 m/m Tc=122.3 min CN=45 Runoff=2.0776 m3/s 35.084 MI Runoff Area=24.9400 ha 0.00% Impervious Runoff Depth=45 mm Subcatchment 8S: East Coral Springs Flow Length=1,050.0 m Tc=203.1 min CN=55 Runoff=0.5647 m3/s 11.321 MI Subcatchment 9S: West Coral Springs Runoff Area=28.0400 ha 0.00% Impervious Runoff Depth=31 mm Flow Length=1,429.0 m Slope=0.0200 m/m Tc=181.4 min CN=48 Runoff=0.4230 m3/s 8.667 MI Avg. Depth=0.53 m Max Vel=3.95 m/s Inflow=2.0748 m3/s 36.324 MI Reach 3R: (new Reach) n=0.013 L=340.00 m S=0.0162 m/m Capacity=10.6285 m³/s Outflow=2.0737 m³/s 36.318 MI Pond 7P: Eastern drain Peak Elev=20.846 m Storage=0.495 MI Inflow=2.0776 m3/s 35.084 MI Outflow=2.0668 m3/s 35.084 MI Pond 8P: main pond Peak Elev=15.459 m Storage=50.139 MI Inflow=8.0126 m³/s 131.390 MI Outflow=2.3838 m3/s 130.508 MI

Total Runoff Area = 314.7670 ha Runoff Volume = 130.156 MI Average Runoff Depth = 41 mm 96.46%Pervious = 303.6102 ha 3.54%Impervious = 11.1568 ha

Appendix 6: Post Development HydroCad results for 2 and 25 yr storms

Post Development 50yr storm

Time span=5.00-48.00 hrs, dt=0.05 hrs, 861 points		
Runoff by SCS TR-20 method, UH=SCS		
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method		

Subcatchment 1S: West Coral Springs (develope	ed) Runoff Area=2	26.1334 ha	0.00% Imp	ervious	Runoff Dept	h=135 mm
	Flow Length=592.0 m	Tc=18.3 mi	n CN ⊨ 82	Runoff=	7.8497 m³/s	35.385 MI

- Subcatchment 2S: Dry Valley West
 Runoff Area=66.9989 ha
 0.00% Impervious
 Runoff Depth=37 mm

 Flow Length=2,546.0 m
 Slope=0.0800 m/m
 Tc=155.6 min
 CN=45
 Runoff=1.3452 m³s 24.674 MI
- Subcatchment 5S: East Coral Springs (developed)
 Runoff Area=29.3600 ha
 38.00% Impervious
 Runoff Depth=121 mm

 Flow Length=435.0 m
 Tc=59.9 min
 CN=77
 Runoff=4.5077 m³s
 35.528 MI
- Subcatchment 6S: Dry Valley East
 Runoff Area=139.2947 ha
 0.00% Impervious
 Runoff Depth=37 mm

 Flow Length=2,166.0 m
 Slope=0.1000 m/m
 Tc=122.3 min
 CN=45
 Runoff=3.2981 m% s
 51.298 MI
- Subcatchment 8S: East Coral Springs Runoff Area=24.9400 ha 0.00% Impervious Runoff Depth=61 mm Flow Length=1,050.0 m Tc=203.1 min CN=55 Runoff=0.7851 m%s 15.260 MI
- Subcatchment 9S: West Coral Springs Runoff Area=28.0400 ha 0.00% Impervious Runoff Depth=44 mm Flow Length=1,429.0 m Slope=0.0200 m/m Tc=181.4 min CN=48 Runoff=0.6357 m³s 12.300 MI
- Reach 3R: (new Reach)
 Avg. Depth=0.75 m
 Max Vel=4.39 m/s
 Inflow=3.2885 m³/s
 52.538 MI

 n=0.013
 L=340.00 m
 S=0.0162 m/m
 Capacity=10.6285 m³/s
 Outflow=3.2868 m³/s
 52.532 MI
- Pond 7P: Eastern drain
 Peak Elev=21.151 m
 Storage=0.921 MI
 Inflow=3.2981 m³/s
 51.298 MI

 Outflow=3.2805 m³/s
 51.298 MI
 Outflow=3.2805 m³/s
 51.298 MI
- Pond 8P: main pond
 Peak Elev=16.134 m
 Storage=79.578 MI
 Inflow=9.7446 m%
 175.679 MI

 Outflow=2.6267 m%
 174.721 MI
 Outflow=2.6267 m%
 174.721 MI

Total Runoff Area = 314.7670 ha Runoff Volume = 174.445 MI Average Runoff Depth = 55 mm 96.46% Pervious = 303.6102 ha 3.54% Impervious = 11.1568 ha

Post Development 100yr storm

Time span=5.00-48.00 hrs, dt=0.05 hrs, 861 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: West Coral Springs (develop	ed) Runoff Area=26.1334 ha 0.00% Impervious Runoff Depth>158 mm Flow Length=592.0 m Tc=18.3 min CN=82 Runoff=9.1140 m³/s 41.332 MI
Subcatchment 2S: Dry Valley West Flow Length=2,546.0 r	Runoff Area=66.9989 ha 0.00% Impervious Runoff Depth=49 mm n Slope=0.0800 m/m Tc=155.6 min CN=45 Runoff=1.8962 m%s 33.073 MI
Subcatchment 5S: East Coral Springs (develope	cd) Runoff Area=29.3600 ha 38.00% Impervious Runoff Depth=143 mm Flow Length=435.0 m Tc=59.9 min CN=77 Runoff=5.3109 m³/s 41.981 MI
Subcatchment 6S: Dry Valley East Flow Length=2,166.0 r	Runoff Area=139.2947 ha 0.00% Impervious Runoff Depth=49 mm n Slope=0.1000 m/m Tc=122.3 min CN=45 Runoff=4.6750 m³/s 68.761 MI
Subcatchment 8S: East Coral Springs	Runoff Area=24.9400 ha 0.00% Impervious Runoff Depth=77 mm iow Length=1,050.0 m Tc=203.1 min CN=55 Runoff=1.0151 m%s 19.327 MI
Subcatchment 9S: West Coral Springs Flow Length=1,429.0 r	Runoff Area=28.0400 ha 0.00% Impervious Runoff Depth=58 mm n Slope=0.0200 m/m Tc=181.4 min CN=48 Runoff=0.8662 m³/s 16.154 MI
Reach 3R: (new Reach) n=0.013 L=340.0	Avg. Depth=0.99 m Max Vel=4.69 m/s Inflow=4.6366 m³/s 70.001 MI 10 m S=0.0162 m/m Capacity=10.6285 m³/s Outflow=4.6343 m³/s 69.996 MI
Pond 7P: Eastern drain	Peak Elev=21.448 m Storage=1.506 MI Inflow=4.6750 m³/s 68.761 MI Outflow=4.6286 m³/s 68.761 MI
Pond 8P: main pond	Peak Elev=16.700 m Storage=112.284 MI Inflow=11.4544 m∛s 221.864 MI Outflow=2.8363 m∛s 220.813 MI

Total Runoff Area = 314.7670 ha Runoff Volume = 220.629 MI Average Runoff Depth = 70 mm 96.46% Pervious = 303.6102 ha 3.54% Impervious = 11.1568 ha

Appendix 7: Post Development HydroCad results for 50 and 100 yr storms